Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810177

RESUMO

Listeria monocytogenes continues to be one of the most important public health challenges for the meat sector. Many attempts have been made to establish the most efficient cleaning and disinfection protocols, but there is still the need for the sector to develop plans with different lines of action. In this regard, an interesting strategy could be based on the control of this type of foodborne pathogen through the resident microbiota naturally established on the surfaces. A potential inhibitor, Bacillus safensis, was found in a previous study that screened the interaction between the resident microbiota and L. monocytogenes in an Iberian pig processing plant. The aim of the present study was to evaluate the effect of preformed biofilms of Bacillus safensis on the adhesion and implantation of 22 strains of L. monocytogenes. Mature preformed B. safensis biofilms can inhibit adhesion and the biofilm formation of multiple L. monocytogenes strains, eliminating the pathogen by a currently unidentified mechanism. Due to the non-enterotoxigenic properties of B. safensis, its presence on certain meat industry surfaces should be favored and it could represent a new way to fight against the persistence of L. monocytogenes in accordance with other bacterial inhibitors and hygiene operations.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/fisiologia , Biofilmes/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Aço Inoxidável , Aderência Bacteriana/fisiologia
2.
Microorganisms ; 9(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467747

RESUMO

Biofilms contain microbial cells which are protected by a self-produced matrix and they firmly attach themselves to many different food industry surfaces. Due to this protection, microorganisms within biofilms are much more difficult to eradicate and therefore to control than suspended cells. A bacterium that tends to produce these structures and persist in food processing plants is Listeria monocytogenes. To this effect, many attempts have been made to develop control strategies to be applied in the food industry, although there seems to be no clear direction on how to manage the risk the bacteria poses. There is no standardized protocol that is applied equally to all food sectors, so the strategies for the control of this pathogen depend on the type of surface, the nature of the product, the conditions of the food industry environment, and indeed the budget. The food industry performs different preventive and corrective measures on possible L. monocytogenes-contaminated surfaces. However, a critical evaluation of the sanitization methods applied must be performed to discern whether the treatment can be effective in the long-term. This review will focus on currently used strategies to eliminate biofilms and control their formation in processing facilities in different food sectors (i.e., dairy, meat, fish, chilled vegetables, and ready-to-eat products). The technologies employed for their control will be exemplified and discussed with the objective of understanding how L. monocytogenes can be improved through food safety management systems.

3.
Compr Rev Food Sci Food Saf ; 19(4): 1877-1907, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337076

RESUMO

The prevention of foodborne diseases is one of the main objectives of health authorities. To this effect, analytical techniques to detect and/or quantify the microbiological contamination of foods prior to their release onto the market are required. Management and control of foodborne pathogens have generally been based on conventional detection methodologies, which are not only time-consuming and labor-intensive but also involve high consumable materials costs. However, this management perspective has changed over time given that the food industry requires efficient analytical methods that obtain rapid results. This review covers the historical context of traditional methods and their passage in time through to the latest developments in rapid methods and their implementation in the food sector. Improvements and limitations in the detection of the most relevant pathogens are discussed from a perspective applicable to the current situation in the food industry. Considering efforts that are being done and recent developments, rapid and accurate methods already used in the food industry will be also affordable and portable and offer connectivity in near future, which improves decision-making and safety throughout the food chain.


Assuntos
Indústria Alimentícia/métodos , Microbiologia de Alimentos/métodos , Bactérias/isolamento & purificação , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/prevenção & controle
4.
Foods ; 9(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268566

RESUMO

Food contact surfaces are primary sources of bacterial contamination in food industry processes. With the objective of preventing bacterial adhesion and biofilm formation on surfaces, this study evaluated the antimicrobial activity of silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticle-containing polyester surfaces (concentration range from 400 ppm to 850 ppm) using two kinds of bacteria, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli), and the prevention of bacterial biofilm formation using the pathogen Listeria monocytogenes. The results of antimicrobial efficacy (reductions ≥ 2 log CFU/cm2) showed that at a concentration of 850 ppm, ZnO-NPs were effective against only E. coli (2.07 log CFU/cm2). However, a concentration of 400 ppm of Ag-NPs was effective against E. coli (4.90 log CFU/cm2) and S. aureus (3.84 log CFU/cm2). Furthermore, a combined concentration of 850 ppm Ag-NPs and 400 ppm ZnO-NPs showed high antimicrobial efficacy against E. coli (5.80 log CFU/cm2) and S. aureus (4.11 log CFU/cm2). The results also showed a high correlation between concentration levels and the bacterial activity of Ag-ZnO-NPs (R2 = 0.97 for S. aureus, and R2 = 0.99 for E. coli). They also showed that unlike individual action, the joint action of Ag-NPs and ZnO-NPs has high antimicrobial efficacy for both types of microorganisms. Moreover, Ag-NPs prevent the biofilm formation of L. monocytogenes in humid conditions of growth at concentrations of 500 ppm. Additional studies under different conditions are needed to test the durability of nanoparticle containing polyester surfaces with antimicrobial properties to optimize their use.

5.
J Dairy Sci ; 103(3): 2117-2127, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928757

RESUMO

This study evaluated the organic residues of milk fouling using fluorescence and confocal laser scanning microscopy. The inorganic content was analyzed with energy-dispersive X-ray spectroscopy, complemented with inductively coupled plasma optical emission spectrometry. These techniques were applied to evaluate milk fouling cleanliness using an alkaline product and an enzymatic formulation based on protease and amylase. The results showed that the efficiency of enzymatic cleaning was 87.1% when it was evaluated at 55°C for 30 min, and with a medium of pH 8.5. No difference was found from the efficacy in eliminating dairy fouling observed for the chemical cleaning (86.9%). The fluorescence microscopy proved useful for determining the organic solid components in the outer layer of the dairy fouling. The fouling spatial disposition in 3 dimensions, obtained by confocal laser scanning microscopy, showed that it was formed of 51.3% sugars, 9.3% fats, and 39.4% proteins, with the enzymatic cleaning of these compounds being homogeneous, compared with chemical cleaning. The protein and lipid contents were in the surface layer, whereas sugars were located in the innermost part that contributes to the Maillard reaction during fouling formation. After enzymatic cleaning, the reduction in the concentration of Ca and P was 71.61 and 74.67%, respectively, compared with fouling intact. Thus, enzymatic cleaning, without the accumulation of Na from chemical cleaning, leaves 1.5 times less mineral than chemical cleaning. Knowing the content and structure of fouling in the industry helps to formulate better products to achieve proper levels of cleanliness. Additionally, studying the cleaning residues helps to avoid problems of cross-contamination between batches or subsequent microbial growths (biofilms) on surfaces with residues.


Assuntos
Contaminação de Alimentos , Leite/química , Animais , Indústria de Laticínios , Feminino , Membranas Artificiais , Microscopia Confocal , Espectrometria por Raios X
6.
Microorganisms ; 7(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817368

RESUMO

Food spoilage is a serious problem in the food industry, since it leads to significant economic losses. One of its main causes is the cross-contamination of food products from industrial surfaces. Three spoilage bacterial species which are highly present in meat and the gastrointestinal tract of chickens were selected: Pseudomonas fragi, Leuconostoc gasicomitatum, and Lactobacillus reuteri. The dual aim was to determine their ability to form monospecies biofilms and to examine how they interact when they coexist together. To do so, mature monospecies biofilms were produced statically for seven days at a temperature of 30 °C. L. gasicomitatum was also used to investigate the behavior of P. fragi and L. reuteri in the formation of multispecies biofilms. The structure and composition of the monospecies biofilms were evaluated by direct epifluorescence microscopy, and the multispecies biofilms were evaluated by plate counting. Both L. gasicomitatum and L. reuteri were able to form biofilms, with counts of approximately 7 Log CFU/cm2 and a defined structure. However, P. fragi obtained counts to the order of 4 Log CFU/cm2, which is significantly different from the previous species (P < 0.05), and it had no network of cell conglomerates. The content of the L. gasicomitatum and L. reuteri biofilm matrices were 70-80% protein, unlike P. fragi, which presented a higher polysaccharide content (P < 0.05). In the multispecies biofilms, the presence of P. fragi did not affect the growth of L. gasicomitatum, which remained at between 5.76 to 6.1 Log CFU/cm2. However, L. reuteri was able to displace L. gasicomitatum growth after 24 h of coexisting in a mixed biofilm, presenting differences in counts of approximately 2 Log CFU/cm2. The study of the biofilms constructed by food industry resident microbiota can help to understand the ecological relations that exist between species, characterize them, and propose strategies to eliminate them. The name of genes and species should be written in italic.

7.
Foodborne Pathog Dis ; 16(4): 262-268, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30526060

RESUMO

This study was intended to investigate the effect of contact with concentrations close to the minimum inhibitory concentration (MIC) (0.5, 1, and 1.5 MIC; MIC of planktonic cells was determined using a microdilution broth method) of sodium hypochlorite (SHY) or benzalkonium chloride (BZK) during the process of formation of biofilm (24 h), upon the architecture and viability of the biofilms formed by four L. monocytogenes isolates of molecular serotype 1/2a: S2-1 (BZK-susceptible strain; MICBZK = 3.0 ppm), S2-2 (BZK-resistant strain qacH positive; MICBZK = 13 ppm), CDL 69 (BZK-resistant strain bcrABC positive; MICBZK = 10 ppm), and S2BAC (BZK-resistant laboratory mutant of S2-1, with multidrug resistance phenotype; MICBZK = 9 ppm). Images were examined through confocal laser scanning microscopy after staining with SYTO 9 and Propidium Iodide. Biovolume values in the observation field (14,161 µm2) in the absence of biocides ranged from 103,928.3 ± 6,730.2 µm3 (S2BAC) to 276,030.9 ± 42,291.9 µm3 (S2-1). Exposure to SHY at 0.5 MIC reduced (p < 0.05) the biovolume of biofilms formed by S2-1 and S2BAC and did not modify (p > 0.05) the biovolume of biofilms by S2-2 and CDL 69. Exposure to sub-MICs of BZK decreased (p < 0.05; S2-1) or enhanced (p < 0.05; S2-2, CDL 69 and S2BAC) biofilm development. Exposure to biocides at 1 or 1.5 MIC inhibited biofilm formation. This study provides clear evidence that BZK at sub-MICs can enhance the biofilm-forming ability of BZK-resistant L. monocytogenes strains. Because biofilms contribute to the persistence of bacteria throughout the food chain and represent a major source of food contamination, our findings suggest the importance of avoiding sub-MICs of disinfectants in food-handling environments.


Assuntos
Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Compostos de Benzalcônio/farmacologia , Humanos , Listeria monocytogenes/fisiologia , Testes de Sensibilidade Microbiana , Hipoclorito de Sódio/farmacologia
8.
Compr Rev Food Sci Food Saf ; 17(5): 1261-1276, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33350156

RESUMO

Microorganisms can colonize and subsequently form biofilms on surfaces, which protect them from adverse conditions and make them more resistant than their planktonic free-living counterparts. This is a major concern in the food industry because the presence of biofilms has significant implications for microbial food contamination and, therefore, for the transmission of foodborne diseases. Adequate hygienic conditions and various preventive and control strategies have consequently been developed to ensure the provision of safe, good-quality food with an acceptable shelf-life. This review focuses on the significance of biofilms in the food industry by describing the factors that favor their formation. The interconnected process among bacteria known as "quorum sensing," which plays a significant role in biofilm development, is also described. Furthermore, we discuss recent strategic methods to detect, quantify, and remove biofilms formed by pathogenic bacteria associated with food processing environments, focusing on the complexity of these microbial communities.

9.
Compr Rev Food Sci Food Saf ; 15(3): 491-505, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-33401823

RESUMO

Food packaging is multifunctional: it protects from harvest to table. Four main groups of materials for direct food contact are mentioned in the literature: wood, glass, plastic, and metal. In this review, the focus is on wooden packaging for direct contact with food. In Europe, wood as a food contact material is subject to European Regulation (EC) No 1935/2004 states that materials must not transfer their constituents to food. Today, wooden packaging, like other packaging materials, does not have a Europe-wide harmonized specific regulation, so member countries legislate at different levels. Wood has been safely used for centuries in contact with food but is usually questioned because of its microbiological behavior compared with smooth surfaces. Based on a review of published conclusions from scientific studies over the last 20 y and after a description of the general properties of wooden packaging, we focus on the microbiological status of natural wood. Then, we discuss the parameters influencing the survival of microorganisms on wood. Finally, we report on the transfer of microorganisms from wood to food and the factors influencing this phenomenon. This review demonstrates that the porous nature of wood, especially when compared with smooth surfaces, is not responsible for the limited hygiene of the material used in the food industry and that it may even be an advantage for its microbiological status. In fact, its rough or porous surface often generates unfavorable conditions for microorganisms. In addition, wood has the particular characteristic of producing antimicrobial components able to inhibit or limit the growth of pathogenic microorganisms.

10.
J Food Sci ; 75(3): H73-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20492296

RESUMO

A heme-iron concentrate product derived from swine hemoglobin was used to enrich the chocolate-flavored filling of biscuits and the bioavailability of this source of heme-iron was assessed in adolescent girls. The placebo control (PC) group consisted of 35 teenagers with the highest baseline hemoglobin concentrations. The supplemented groups were randomized to receive biscuits fortified with iron sulfate (IS, n = 37) or heme-iron concentrate (HIC, n = 40). Both groups were supplemented with 10.3 mg Fe/d for 7 wk. Blood chemistry and hematology analyses were performed at baseline and at the end of the study. The baseline prevalence of anemia (hemoglobin <12 g/dl) in the entire group was 3.9% and by the end of the study it had fallen to 2.3%. The hemoglobin levels in both supplemented groups increased (P < 0.05) during the study period from 13.6 and 13.5 g/dl for HIC and IS, respectively, at baseline to 14 g/dl at the end of the study. Serum ferritin concentrations decreased by the end of the study in both the PC and IS groups (P < 0.05), but not in the heme group. In conclusion, iron bioavailability from HIC-fortified biscuits was calculated to be 23.7% higher than that observed for IS, as shown by the differences observed in serum ferritin levels during the study. The iron contained in the heme-iron concentrate was well absorbed and tolerated by the adolescents included in the study.


Assuntos
Alimentos Fortificados , Heme/administração & dosagem , Ferro/farmacocinética , Adolescente , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Animais , Disponibilidade Biológica , Criança , Método Duplo-Cego , Feminino , Manipulação de Alimentos/métodos , Alimentos Fortificados/análise , Testes Hematológicos , Heme/isolamento & purificação , Heme/uso terapêutico , Hemoglobinas/análise , Hemoglobinas/química , Humanos , Ferro/sangue , Ferro/uso terapêutico , México , População Rural , Sus scrofa
11.
Int J Biol Sci ; 4(1): 58-62, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18311330

RESUMO

The objective of this work was to evaluate the bioavailability of heme iron added to biscuit filling. It comprised two stages: first, the development of the heme iron enriched biscuit filling; second, the evaluation of the bioavailability of the mineral in fattening piglets. Two groups were selected randomly and fed: a) Low iron feed and biscuits with heme iron supplemented filling; b) Normal feed (with ferrous sulphate). Weight and blood parameters were measured every fifteen days. Averages were compared after duplicate analyses. The filling had a creamy appearance, chocolate taste and smell, appropriate spreadability, heme iron content of 2.6 mg per gram and a shelf-life of a month. The heme iron supplemented pigs registered a greater (P<0.05) weight gain (27.8% more than the control group). Mortality in the heme iron group was 10%, compared to 50% in the control group. The amount of iron measured in the different compartment was greater in the heme group (3315 mg) than in the control group (2792 mg). However, the amount of iron consumed in the latter was greater. We show that an acceptable product with high heme iron content can be formulated, suitable for use as biscuit filling. The heme iron supplement produced better weight increase and lesser mortality in fattening pigs. The bioavailability of heme iron was 23% greater (P<0.05) compared to ferrous sulphate.


Assuntos
Ração Animal/análise , Dieta/veterinária , Heme/farmacocinética , Ferro/farmacocinética , Suínos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Disponibilidade Biológica , Suplementos Nutricionais , Feminino , Compostos Ferrosos/química , Compostos Ferrosos/farmacocinética , Compostos Ferrosos/farmacologia , Aromatizantes , Heme/química , Heme/farmacologia , Humanos , Ferro/química , Ferro/metabolismo , Suínos/crescimento & desenvolvimento , Aumento de Peso
12.
J AOAC Int ; 88(4): 1223-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16152944

RESUMO

Electrical measurements are easier and faster than traditional methods for evaluating surface sanitation in the food industry. However, the behavior of sublethally damaged bacteria is different in each method. The electrical method is more sensitive to the presence of disinfectant traces in the samples. These issues lead to low correlations between both methods (r2 < 0.7). The use of smaller sample volumes in electrical measurements, together with the addition of a blend of neutralizers to the sample and the subsequent removal by filtration, provide r2 values > 0.9. The developed protocol shows an excellent correlation with traditional methods and facilitates the adaptation of the electrical method to routine monitoring of surface sanitation. It allows for a reduction in holding times and thereby provides the necessary time to make decisions.


Assuntos
Técnicas Bacteriológicas/métodos , Contagem de Colônia Microbiana/métodos , Eletroquímica/métodos , Saneamento/métodos , Calibragem , Meios de Cultura/farmacologia , Desinfetantes , Desinfecção , Filtração , Indústria Alimentícia/métodos , Carne , Reprodutibilidade dos Testes , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...